CspA, the major cold shock protein of Escherichia coli, negatively regulates its own gene expression.
نویسندگان
چکیده
When the gene for CspA, the major cold shock protein of Escherichia coli, was disrupted by a novel positive/negative selection method, the deltacspA cells did not show any discernible growth defect at either 37 or 15 degrees C. By two-dimensional gel electrophoresis, total protein synthesis was analyzed after temperature downshift in the deltacspA strain. The production of the CspA homologs CspB and CspG increased, and the duration of their expression was prolonged, suggesting that both CspB and CspG compensate for the function of CspA in the absence of CspA during cold shock adaptation. Interestingly, the production of the 159-base 5'-untranslated region (5'-UTR) of cspA from the chromosomal cspA::cat gene, detected by primer extension, failed to be repressed after cold shock. When an independent system to produce CspA was added to the deltacspA strain, the 5'-UTR production for the cspA::cat gene was significantly reduced compared to that of the deltacspA strain. By examining the expression of translationally fused cspA and cspB genes to lacZ in the deltacspA strain, it was found that cspA is more strongly regulated by CspA than cspB is. We showed that the increased expression of the 5'-UTR of the cspA mRNA in the deltacspA strain occurred mainly at the level of transcription and, to a certain extent, at the level of mRNA stabilization. The mRNA stabilization in the deltacspA strain was observed for other mRNAs, supporting the notion that CspA functions as an mRNA chaperone to destabilize secondary structures in mRNAs.
منابع مشابه
The role of the 5'-end untranslated region of the mRNA for CspA, the major cold-shock protein of Escherichia coli, in cold-shock adaptation.
During cellular adaptation to low temperature, Escherichia coli transiently synthesizes the major cold-shock protein CspA. It was found that adaptation to cold shock is blocked when the 143-base sequence of the 5' untranslated region (5' UTR) of the cspA mRNA is overproduced. The overproduction of this UTR at 15 degrees C caused the synthesis of not only CspA but also other cold-shock proteins ...
متن کاملMassive presence of the Escherichia coli 'major cold-shock protein' CspA under non-stress conditions.
The most characteristic event of cold-shock activation in Escherichia coli is believed to be the de novo synthesis of CspA. We demonstrate, however, that the cellular concentration of this protein is > or = 50 microM during early exponential growth at 37 degrees C; therefore, its designation as a major cold-shock protein is a misnomer. The cspA mRNA level decreases rapidly with increasing cell ...
متن کاملIdentification of the csp gene and molecular modelling of the CspA-like protein from Antarctic soil-dwelling psychrotrophic bacterium Psychrobacter sp. B6.
We cloned and sequenced the cspA-like gene from a psychrotrophic Antarctic soil-dwelling bacterial strain Psychrobacter sp. B6. The gene is 213 bp long and shows 99% and 98% sequence identity with the Psychrobacter cryohalolentis K5 gene encoding a cold-shock DNA-binding domain protein and the Psychrobacter arcticus transcriptional regulator-CspA gene, respectively. The protein encoded by the P...
متن کاملEscherichia coli CspA-family RNA chaperones are transcription antiterminators.
CspA, the major cold-shock protein of Escherichia coli, is an RNA chaperone, which is thought to facilitate translation at low temperature by destabilizing mRNA structures. Here we demonstrate that CspA, as well as homologous RNA chaperones CspE and CspC, are transcription antiterminators. In vitro, the addition of physiological concentrations of recombinant CspA, CspE, or CspC decreased transc...
متن کاملCspA, the major cold-shock protein of Escherichia coli, is an RNA chaperone.
CspA, the major cold-shock protein of Escherichia coli, is dramatically induced during the cold-shock response. The amino acid sequence of CspA shows 43% identity to the "cold-shock domain" of the eukaryotic Y-box protein family, which interacts with RNA and DNA to regulate their functions. Here, we demonstrate that CspA binds to RNA as a chaperone. First, CspA cooperatively binds to heat-denat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of bacteriology
دوره 179 22 شماره
صفحات -
تاریخ انتشار 1997